产品描述
BKP1Q1S0.8T0F0
BKP1Q1S1.1T0F0
BKP1Q1S1.3T0F0
BKP1Q1S1.6T0F0
BKP1Q1S1.8T0F0
BKP1Q1S2.1T0F0
BKP1Q1S2.7T0F0
BKP1Q1S3.2T0F0
BKP1Q1S3.7T0F0
BKP1Q1S4.2T0F0
BKP1Q1S4.8T0F0
BKP1Q1S5.8T0F0
BKP1Q1S7.0T0F0
BKP1Q1S8.0T0F0
BKP1Q1S0.8T1F0
BKP1Q1S1.1T1F0
BKP1Q1S1.3T1F0
BKP1Q1S1.6T1F0
BKP1Q1S1.8T1F0
BKP1Q1S2.1T1F0
BKP1Q1S2.7T1F0
BKP1Q1S3.2T1F0
BKP1Q1S3.7T1F0
BKP1Q1S4.2T1F0
BKP1Q1S4.8T1F0
BKP1Q1S5.8T1F0
BKP1Q1S7.0T1F0
BKP1Q1S8.0T1F0
BKP1Q2S0.8G1L3
BKP1Q2S1.1G1L3
BKP1Q2S1.3G1L3
BKP1Q2S1.6G1L3
BKP1Q2S1.8G1L3
BKP1Q2S2.1G1L3
BKP1Q2S2.7G1L3
BKP1Q2S3.2G1L3
BKP1Q2S3.7G1L3
BKP1Q2S4.2G1L3
BKP1Q2S4.8G1L3
BKP1Q2S5.8G1L3
BKP1Q2S7.0G1L3
BKP1Q2S8.0G1L3
BKP1B0D0.8T0F0
BKP1B0D1.1T0F0
BKP1B0D1.3T0F0
BKP1B0D1.6T0F0
BKP1B0D1.8T0F0
BKP1B0D2.1T0F0
BKP1B0D2.7T0F0
BKP1B0D3.2T0F0
BKP1B0D3.7T0F0
BKP1B0D4.2T0F0
BKP1B0D4.8T0F0
BKP1B0D5.8T0F0
BKP1B0D7.0T0F0
BKP1B0D8.0T0F0
HDK1S0.8B0F1Z
HDK1S1.1B0F1Z
HDK1S1.3B0F1Z
HDK1S1.6B0F1Z
HDK1S1.8B0F1Z
HDK1S2.1B0F1Z
HDK1S2.7B0F1Z
HDK1S3.2B0F1Z
HDK1S3.7B0F1Z
HDK1S4.2B0F1Z
HDK1S4.8B0F1Z
HDK1S5.8B0F1Z
HDK1S6.0B0F1Z
HDK1S7.0B0F1Z
HDK1S8.0B0F1Z
IPB3/DB18P0
HDK1D0.8B0L15Z
HDK1D1.1B0L15Z
HDK1D1.3B0L15Z
HDK1D1.6B0L15Z
HDK1D1.8B0L15Z
HDK1D2.1B0L15Z
HDK1D2.7B0L15Z
HDK1D3.2B0L15Z
HDK1D3.7B0L15Z
HDK1D4.2B0L15Z
齿轮泵是应用广泛的液体输送泵,具有尺寸小、工作可靠、对油液不敏感、制造容易、自吸能力强、维护方便等优点。但它的输出脉动明显、困油严重、排量小,限制了其应用场合。同步齿轮泵能够降低齿轮泵径向力,提高齿轮泵的工作压力。而从三个方面进行了研究:在综合分析工作特性之后,分析工作原理和结构特点,并以单位排量体积小为目标,建立了同步齿轮泵齿轮参数的优模型,选择了优化算法,得出。为了实现同步齿轮泵的齿轮副模拟装配和齿轮啮合力仿真模型,基于Hertz静力弹性接触理论,利用插件进行了同步齿轮泵的啮合力仿真,得出特点。对同步齿轮泵的二维简化模型进行了流场仿真,为同步齿轮泵的三维流场仿真分析奠定了基础,为基于动网格的齿轮泵内部流场模拟走向实践奠定基础。